Potential contribution of a defective RNA segment of *Fusarium boothii* large flexivirus 1 on hypovirulence of the host *Fusarium* Head Blight fungus

Sotaro Chiba1), Yukiyoshi Mizutani1), Abraham Adane2), Kazuma Uesaka3), Hideki Kondo2), Haruhisa Suga4), Nobuhiro Suzuki2)

1)Graduate School of Bioagricultural Sciences, Nagoya University, Japan
2)Institute of Plant Science and Resources, Okayama University, Japan
3)Center for Gene Research, Nagoya University, Japan
4)Life Science Research Center, Gifu University, Japan

**Purpose:** Mycoviruses have a potential to be a biocontrol agent of pathogenic fungi. In the past 20 years, extensive mycovirus screenings identified diverse RNA and DNA mycoviruses, some of which were shown to affect host fungal growth and/or pathogenicity. This study was aimed at screening of virulence-attenuating mycoviruses that could control *Fusarium* Head Blight (FHB) disease of cereal crops.

**Methods:** Screening for virus-infected *Fusarium* species was conducted with conventional double-stranded RNA (dsRNA) detection. The sequence of dsRNAs was determined by construction of cDNA-library and subsequent sanger sequencing, and high-throughput RNAseq analysis. Biological properties of mycoviruses were analyzed by evaluation of growth and pathogenicity of host *Fusarium* fungi on a synthetic media and wheat plants. Virus curing was performed by single spore isolation and regeneration in the presence of an antiviral drug, ribavirin.

**Results and conclusions:** Growth-impaired, hypovirulent *Fusarium boothii* strain, BL13, was isolated and found to be virus-infected. A novel tymovirus-like virus namely *Fusarium boothii* large flexivirus 1 (FbLFV1) and a new mitochondrial virus, *Fusarium boothii* mitovirus 1 (FbMV1), each encoded single ORFs, were identified in BL13. The fungal strain additionally carried defective RNA form of FbLFV1 (D-RNA) that lacked most middle part of the FbLFV1 genome but retained the N- and C-terminal coding domains in-frame. The FbMV1 infection alone unlikely contributed to hypovirulence of the host fungus. Moreover, a possible contribution of the D-RNA to fungal growth inhibition was observed. Taken together, the D-RNA of FbLFV1 might produce a cytopathic protein that potentially control the FHB on wheat.