Genomic basis of fungal bioluminescence in *Mycena* species

Huei-Mien Ke¹, Chan-Yi Ivy Lin¹, Hsin-Han Lee¹, Yu-Ching Liu¹, Chiung-Chih Chang³, Jo-Wei Hsieh², Pao-Yang Chen², Hsiao-Wei Kao³, Isheng Jason Tsai¹

¹Biodiversity Research Center, Academia Sinica, Taiwan
²Institute of Plant and Microbial Biology, Academia Sinica, Taiwan
³Department of Life Sciences, National Chung Hsing University, Taiwan

Bioluminescence is present in many species ranging from marine bacteria to terrestrial fungi, earthworm, and firefly. Currently more than 78 fungal species are known to display bioluminescence. Although the underlying chemical reaction in all bioluminescent species are believed to involve a luciferin and a luciferase enzyme were discovered last year, its regulation and ecological role remains elusive.

To further understand the global view of expression profile of bioluminescence and its evolution, comparative transcriptomics and comparative genomics were conducted. Five species belonging to *Mycena* genus including four bioluminescent species and one nonbioluminescent species were selected for genome sequencing. In these four bioluminescent fungi, differential expression genes were either identified from comparison between higher and lower bioluminescent mycelium in the same species or identified from the correlation between bioluminescent intensity of tissues and gene expression levels.

Our results reveal that all bioluminescent fungi shared common ancestry. Three gene families including luciferase (luz), hispidin-3-hydroxylase (H3H), and fatty acid desaturase were up-regulated according to the intersect of up-regulated genes among four bioluminescent species. The gene luz is absent in the nonbioluminescent species. There are 6-30 paralogues of h3h in the four bioluminescent fungi but with different gene expression levels. These systematically understanding will further unravel the roles of fungi in ecological niches and evolution in the bioluminescence of *Mycena* fungi in general.